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The role of Coulomb disorder, either of extrinsic origin or introduced by dopant ions in undoped and lightly
doped cuprates, is studied. We demonstrate that charged surface defects in an insulator lead to a Gaussian
broadening of the angle-resolved photoemisson spectroscopy �ARPES� lines. The effect is due to the long-
range nature of the Coulomb interaction. A tiny surface concentration of defects about a fraction of one percent
is sufficient to explain the line broadening observed in Sr2CuO2Cl2, La2CuO4, and Ca2CuO2Cl2. Due to the
Coulomb screening, the ARPES spectra evolve dramatically with doping, changing their shape from a broad
Gaussian form to narrow Lorentzian ones. To understand the screening mechanism and the line-shape evolu-
tion in detail, we perform Hartree-Fock simulations with random positions of surface defects and dopant ions.
To check validity of the model we calculate the nuclear quadrupole resonance �NQR� line shapes as a function
of doping and reproduce the experimentally observed NQR spectra. Our study also indicates opening of a
substantial Coulomb gap at the chemical potential. For a surface CuO2 layer the value of the gap is on the order
of 10 meV while in the bulk it is reduced to the value about a few meV.
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I. INTRODUCTION

During last two decades, the angle-resolved photoemis-
sion spectroscopy �ARPES� has developed to be one of the
most important methods in the physics of strongly correlated
systems.1 Although the mechanism and physics behind the
method is well understood, there are still issues remaining
open to date. The large ARPES linewidth observed in insu-
lating parent compounds Sr2CuO2Cl2, La2CuO4, and
Ca2CuO2Cl2 is one of such problems. Already in the first
experiments with Sr2CuO2Cl2,2,3 it has been demonstrated
that while the quasiparticle dispersion is well described by
the extended t-J model,4,5 the quasiparticle width about 0.4
eV is difficult to reconcile with the predictions of this model
alone. Similar broad spectra were later observed in La2CuO4
�Refs. 6–8� and in Ca2CuO2Cl2.9,10 Interestingly, this broad-
ening is not quite universal: while the linewidth in
Sr2CuO2Cl2 and La2CuO4 is about 0.40–0.45 eV, it is only
about 0.25 eV in Ca2CuO2Cl2, possibly indicating an extrin-
sic origin of the effect. Another important observation was
made in Ref. 9: the quasiparticle lines display a Gaussian
shape which is difficult to understand in terms of quasiparti-
cle damping resulting typically in line shapes of the Lorent-
zian form.

Evolution of the ARPES line shapes with doping has also
been studied intensively.6–10 At doping as small as 3%, the
line shape has already changed dramatically: a narrow peak
of a Lorentzian shape is found to emerge from a shoulderlike
broad background with the intensity roughly proportional to
doping. The doping dependence of the 63Cu nuclear quadru-
pole resonance �NQR� spectrum in La2−xSrxCuO4 �Refs. 11
and 12� displays a totally different behavior. The NQR line is
very narrow in the parent compound; the effect of doping is
to broaden and shift the spectra to higher frequency. Since
NQR is a local probe of hole density, the broad spectrum
indicates a very inhomogeneous hole density profile in the

bulk of the sample, which is a consequence of the intrinsic
disorder due to random La→Sr substitutions.12

An explanation of the broad ARPES lines in undoped cu-
prates was suggested in Ref. 9. According to this scenario,
the strong interactions between holes and optical phonons
lead to the Franck-Condon broadening of the spectral func-
tions. A detailed numerical study of a single hole in the t-J
model coupled to optical phonons13 has confirmed that by
appropriate tuning of the hole-phonon coupling one can
properly reproduce the ARPES spectra �see also Ref. 14 for a
review�. In the Franck-Condon broadening picture, multiple
phonon subbands are generated by a photoexcited hole and
the observed broad ARPES line corresponds to the hole-
phonon incoherent background. The narrow quasiparticle
line still exists but it is practically invisible due to strongly
suppressed quasiparticle residue.

While the electron-phonon mechanism enhanced by cor-
relation effects in Mott systems13,14 is able to explain broad
ARPES lines in insulating cuprates, some questions remain
to be clarified. As noticed in Ref. 15, strong suppression of
quasiparticle peak due to Franck-Condon mechanism implies
also a drastic enhancement of a hole effective mass from its
“bare value” m��2me calculated within the t-J model. The
resulting large mass polarons are then readily trapped by
defects, e.g., by a negatively charged Sr dopant ion due to
Coulomb attraction. For such a strong localization on atomic
scales, the antiferromagnetic order would survive up to a
very high doping level �similar to the case of Zn substitu-
tion�, which contradicts the experimental data. In fact, the
hole localization length in a lightly doped La2CuO4�x
�0.01� is known to be about 10 Å corresponding to a mod-
erate mass m��2me �see Refs. 16 and 17�. Recent
calculations18 suggest that nonlocal nature of electron-
phonon interaction and longer-range hoppings may help to
resolve the above difficulties. To reach a conclusive picture,
however, further theoretical studies of the electron-phonon
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mechanism in cuprates at finite density of holes are required.
In the present paper we consider a different mechanism

for broadening of the ARPES spectra. The mechanism is
based on Coulomb disorder effects. There are two distinct
kinds of Coulomb defects under consideration. The first kind
is related to the doping mechanism, where random La→Sr
substitutions create �negatively charged� Coulomb defects in
the bulk. Bulk density of these defects is equal to the Sr
concentration and hence equal to the doping level x.

The second kind of defects are surface defects. We as-
sume that cleaving the crystal creates some surface Coulomb
defects that are unrelated to doping and each surface defect
has either positive or negative elementary charge. The pres-
ence of surface defects �e.g., missing surface ions� is physi-
cally plausible and, in fact, they are observable with a scan-
ning tunneling microscope �STM�.19,20 Denoting density of
positive defects by C, we assume that negative defects have
the same density to fulfill the charge neutrality condition.
While the value of C is material sensitive and not known a
priori, we will demonstrate that a concentration about a frac-
tion of one percent is already sufficient to explain observed
ARPES broadening in undoped compounds. One may argue
that the emergence of a narrow quasiparticle peak upon dop-
ing disfavors the disorder picture since disorder is also en-
hanced upon doping.13 However, interactions between holes
induce nontrivial screening of impurities and dramatically
reduce the effect of disorder on the ARPES spectra at finite
doping. We find that the screening effects lead to the onset of
narrow quasiparticle peaks already at doping as small as 1%.
Moreover, we will examine the effect of hole-hole interac-
tions on the density of states �DOS�, where we recover the
well-known results of localization theory,21,22 and discuss
their implication on transport properties of lightly doped
La2−xSrxCuO4.23–25 Within the same model and approxima-
tions, we also address the disorder effects on NQR spectra
and find a good description of the experimental data.

Structure of the paper is as follows. In Sec. II, we con-
sider insulating undoped compounds and calculate effect of
surface Coulomb defects on ARPES spectra. In Sec. III, we
consider doped compounds and calculate effect of bulk Cou-
lomb defects on NQR spectra. Section IV highlights the ef-
fect of interactions on the bulk DOS. Evolution of ARPES
spectra with doping is calculated in Sec. V, where both sur-
face and bulk Coulomb defects are taken into account simul-
taneously. In the case of doped compounds �Secs. III–V� one
must consider screening of the long-range Coulomb interac-
tion by mobile holes, which is done numerically by perform-
ing many-body Hartree-Fock simulations. It is noticed that
we do not consider a superconducting pairing in the present
paper. Our primary goal here is to analyze role of the Cou-
lomb disorder. Therefore, we concentrate on single-particle
properties and on the long-range Coulomb interactions only.

II. ARPES LINE SHAPE IN AN INSULATOR:
BROADENING BY SURFACE COULOMB DEFECTS

We first consider the ARPES spectrum in the undoped
insulating case, where a single hole is injected into the
cleaved surface of, e.g., La2CuO4. Coulomb potential energy

of the hole at position r due to interaction with surface de-
fects is

U�r� = �
l

eql

�s
��r − rl�2 + ad

2
. �1�

Here e is charge of the hole �elementary charge� and ql
= �e�q is charge of the defect. Eventually we will take q
=1 but now we keep q as a parameter for general Coulomb
disorder. We assume that the defect is located at distance ad
above the CuO2 plane and rl is the two-dimensional �2D�
position of the defect.

Note that we use electromagnetic units, 1 /4��0=1, and
the effective surface dielectric constant is26

�s =
1

2
�� + 1� , �2�

where � is effective bulk dielectric constant. According to
Ref. 16 the bulk dielectric constant is slightly anisotropic
�c�30 and �ab�40. In this case the effective bulk constant
in Eq. �2� reads as26 �=��ab�c. As a representative value for
cuprates, we will use �=40 for the bulk dielectric constant
throughout the paper.

The lattice spacing of planar Cu’s is set to be unity, a0
�3.8 Å→1, and hence the concentration of surface Cou-
lomb defects C−=C+=C is measured in units of the number
of defects per Cu site. In the limit of low defect concentra-
tion, the potential energy constructed by Eq. �1� varies
slowly as a function of position r and one can define a dis-
tribution function P�U� as the probability to find a given

value of U. As C−=C+, the average value of U is zero, Ū
=�UP�U�dU=0. It is instructive to calculate the root-mean-
square deviation from zero, �0

2=U2=�U2P�U�dU. Squaring
Eq. �1� and averaging over random positions of defects we
find

�0
2 = 	 e2

�sa0

2

q22C�
0

L 2�rdr

r2 + ad
2 , �3�

where L is the long-distance �infrared� cutoff. Thus,

�0 = V�4�C ln	 L

ad

 , �4�

V =
qe2

�sa0
� q � 190 meV, �5�

where V fixes the energy scale. For purely random distribu-
tion of Coulomb defects the infrared cutoff L is equal to the
radius of the incident photon beam �assuming that the radius
is smaller than the sample size�. In principle, one can also
imagine that due to some reason related to the cleaving pro-
cess there is a long-distance correlation between Coulomb
defects. In this case the infrared cutoff is equal to the corre-
sponding correlation length. Fortunately, the dependence of
�0 on the infrared cutoff is very weak. For instance, �0 for
L=1 mm differs from that for L=1 �m only by 30%. It is
worth mentioning that the infrared logarithmic divergence of
the integral in Eq. �3� is a consequence of the long-range
nature of the unscreened Coulomb interaction.
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It is also instructive to study the spatial correlator of the
potential, �U�r�U�0�. Clearly, there is a structure in the cor-
relator at a distance about average separation between de-
fects, r�1 /�C. However, the most interesting behavior is at
distances 1 /�C�r�L. A straightforward calculation similar
to Eq. �3� yields that in this regime

�U�r�U�0�
�U2�0�

�
ln	L

r



ln	 L

ad

 , �6�

thus the potential varies slowly at the scale comparable with
the infrared cutoff.

Now we calculate the entire distribution function of the
potential,

P��� = �	�� − U�r�� , �7�

where � . . .  denotes averaging over the observation point or,
alternatively, averaging over distribution of defects. We
choose to put the observation point at the origin and perform
averaging over distribution of defects, hence Eq. �1� be-
comes U�0�=�i

V
Ri

−� j
V
Rj

, where i enumerates positive defects
and j enumerates negative ones, and R=�r2+ad

2 is the dis-
tance measured in units of lattice spacing. From Eq. �7� one
obtains

P��� =
1

2�
�

−


+


dtei�t��
i

e−iV/Rit�
j

e+iV/Rjt� . �8�

All defects are distributed independently, therefore

��
i

e−iV/Rit�
j

e+iV/Rjt� = �e−iV/Rtr
N+�eiV/Rtr

N−, �9�

where N+ and N− are total numbers of positive and negative
defects and � . . . r denotes averaging over the defect position.
Let us denote by N the total number of sites in the square
lattice, therefore

�e�iV/Rtr = 1 −
I�

N
, �10�

where

I� =� d2r	1 − exp��i
V

R
t�
 . �11�

When deriving Eq. �10� we keep in mind that 1
N�d2r=1.

Hence

�e�iV/Rtr
N� = 	1 −

I�

N

N�

→ e−CI�. �12�

Here we have taken into account that concentration of de-
fects is C=N+ /N=N− /N. Hence, Eq. �9� is transformed to

��
i

e−iV/Rit�
j

e+iV/Rjt� = e−C�I++I−�

= exp�− 2C� d2r	1 − cos
Vt

R

� .

�13�

To evaluate the integral with logarithmic accuracy, we ex-
pand cosVt

R at Vt
R �1, obtaining

2C� d2r	1 − cos
Vt

R

 � 2�CV2t2�

0

L rdr

r2 + ad
2

= 2�CV2t2 ln
L

ad
. �14�

Substituting Eqs. �14� and �13� into Eq. �8� and performing
integration over t, we find the Gaussian distribution for the
potential

P��� =
1

�2��0

e−�2/2�0
2
, �15�

where �0 is given by Eq. �4�. Hence the half width of the
potential distribution is

� = �8 ln�2��0 = 4�2� ln�2�ln	 L

ad

�CV . �16�

A numerical simulation, that statistically includes 100 defect
configurations for system of size L

ad
10, shows a remarkable

consistency between the potential generated by Eq. �1� and
its analytical distribution, Eq. �15�, with the width, Eq. �16�.
Note that one should be cautious about the numerical value
of ad. Since it is the effective short-range cutoff of the Cou-
lomb potential, it must also include the size of Zhang-Rice
singlet which is about one lattice constant. The precise value
of ad will be discussed in the Sec. III but now we take ad
=3.8 Å→1. The width of potential distribution in
Sr2CuO2Cl2, La2CuO4, and Ca2CuO2Cl2 can then be esti-
mated by choosing q=1 and L=1 mm, which results in

� = 250 meV at C � 0.002

� = 450 meV at C � 0.006. �17�

We suggest that Eq. �15� is exactly the ARPES line broad-
ening function with the half width given by Eqs. �16� and
�17�. This can be understood as follows: in the photoemis-
sion process a single hole is injected in the top layer of the
insulator and there are two mechanisms for the line broaden-
ing in the presence of disorder. The first one is the direct
scattering of the hole from individual defect, which is the
short-range mechanism and therefore its contribution to the
broadening is proportional to the first power of concentration
of defects. We expect that this mechanism is negligible be-
cause of the low concentration of defects. The second
mechanism is due to the fact that different holes are injected
in different parts of the sample which have different poten-
tials. Spectral functions are then broadened due to the poten-
tial distribution, Eq. �15�. Contribution of this mechanism to
broadening is proportional to the square root of concentra-
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tion of defects and, moreover, it is logarithmically enhanced,
see Eq. �16�.

The above picture is supported by numerical calculations
that we going to discuss now. To construct a model that can
properly describe a hole motion in undoped cuprates we first
notice that there are different length scales in the problem: �i�
the scale on the order of 1–2 lattice spacing. Strong correla-
tions, such as excitations of multiple virtual magnons, occur
at this scale. �ii� The scale about average separation between
Coulomb defects �1 /�C. Scattering from defects takes
place at this scale. �iii� The scale of 1 /�C�r�L, where
logarithmically enhanced variations in the potential develop.
Regarding the point �i�, we do not treat here the strong cor-
relations explicitly but adopt the effective dressed hole dis-
persion after quantum fluctuations at short distances �i� are
included. It is known that dispersion of the dressed hole has
minima at points ��� /2, �� /2� and is approximately iso-
tropic around these points.5 The band width of the dressed
hole is about 2J, where J�130 meV is the superexchange
in the t-J model, although we do not directly employ the t-J
formalism. Hereafter we set energy units

J = 130 meV → 1. �18�

To imitate dispersion of the dressed hole we consider spin-
less fermions on a 2D square lattice. The Hamiltonian reads
as

Ht = �
�ij

t�ci
†cj , �19�

where ci
† is the hole operator at site i and t� denotes the

next-next-nearest-neighbor hopping on the square lattice.
Hamiltonian �19� yields the following dispersion

�k = 2t��cos 2kx + cos 2ky� . �20�

The dispersion is isotropic around minima at points
��� /2, �� /2� as shown in Fig. 1. We choose t�=0.25 to
reproduce the realistic hole bandwidth as obtained from the
t-J model. Notice that in the original t-J model formalism,
there are four half pockets inside magnetic Brillouin zone,
and each pocket has two pseudospins;5 in the present model
we consider four full pockets inside the full Brillouin zone
with spinless fermions, hence the number of charge degrees
of freedom is exactly the same. Clearly our model does not
have a momentum dependence of the quasiparticle residue,

especially its suppression outside of magnetic Brillouin zone
due to strong correlations.5 However, the important point is
that the Coulomb interaction remains unchanged whatever
the value of the residue is. This is because the charge is
conserved even though holes are heavily dressed.

The hole-defect interaction due to Coulomb potential in
Eq. �1� reads, after we set J→1 and a0→1, as follows:

Hh−d = �
l,i

Ql
s

��Rl − ri�2 + ad
2
ci

†ci, �21�

with a dimensionless “charge” value

Ql
s = �

V

J
� � 1.5. �22�

The superscript “s” stands for “surface.” This yields the full
Hamiltonian

H = Ht + Hh−d, �23�

which can be easily diagonalized on a finite-size cluster
where positive and negative defects with concentration C
each are randomly distributed. The ARPES experiments
measure the electron spectral function which can be calcu-
lated exactly using the cluster eigenstates and eigenenergies.
Denoting the hole energy as � and the electron energy as �,
we have �=−� and hence

A�k,�� = �
n

��k�n�2	�� − En�

=
1

�
�

n
��

i

eik·ri�n�ri��2 �

�� − En�2 + �2 ,

A�k,�� = A�k,− �� , �24�

where �n�ri�= �i �n is the coordinate representation of the nth
eigenstate, H�n=En�n, and �=0.01 is the artificial broaden-
ing of discrete energy spectrum. Note that the artificial
broadening �=0.01=1.3 meV is much smaller than any
physical contribution to the width considered in the present
work. Therefore � is just a technical mean to stabilize the
numerical procedure and does not contribute to physical
broadening. We perform diagonalization in a 36�36 cluster
with periodic boundary conditions, where the distance �Rl
−ri� is chosen to be the shortest distance on the torus. A
statistical averaging over 100 disorder configurations is per-
formed.

Figure 2 shows the resulting ARPES spectral function at
three different momenta k= �� /2,� /2�, �0,� /2�, �0,0� to-
gether with the analytical distribution, Eq. �15� of the Cou-
lomb potential P���. In this pedagogical example where the
cluster size is certainly smaller than size of experimental
samples, we choose C=0.6%. There is an excellent agree-
ment of the line shape and the linewidth between P��� and
A�k ,�� in all three momenta. This confirms our statement
that Eq. �15� describes a Gaussian broadening of ARPES
spectra in an insulator due to surface Coulomb defects, and
implies that according to Eq. �17�, the concentration of 0.6%
surface defects �for one charge species� is sufficient to ex-
plain the observed broadening in La2CuO4, and 0.2% is suf-

kyπ

kx

π−π

−π

FIG. 1. Dispersion minima of the spinless fermion generated by
Hamiltonian �19�.

CHEN, KHALIULLIN, AND SUSHKOV PHYSICAL REVIEW B 80, 094519 �2009�

094519-4



ficient for Ca2CuO2Cl2. It is worth mentioning that this
broadening is a fairly general mechanism that works not only
for Mott insulators, it is also valid for usual band insulators.

How one can check experimentally validity of the sug-
gested broadening mechanism? There are a few “handles” in
Eq. �16�: the infrared cutoff L, the ultraviolet cutoff ad, the
density C, and the potential V of the defects. One can vary ad
by probing deeper layers �e.g., using different photon ener-
gies�: for the top layer ad=1, for the second one ad=4.4, for
the third layer ad=7.8, etc. Therefore the width for the sec-
ond layer must be by 5–6 % smaller than the width for the
top one, the width for the third layer is further reduced by
2–3 %. These are rather small effects. Another possible
handle is the infrared cutoff L. It is natural to assume that L
is equal to the radius of the incident photon beam. In this
case focusing/defocusing of the beam changes the width ac-
cordingly. For instance, the radius variation from L=1 �m
to L=1 mm gives rise to a sizable variation in the width by
30%. It can be noticed, however, that the width is most sen-
sitive to the amount and the nature of defects, so systematic
studies of the width variation as a function of the surface
quality might be useful.

III. SPECTRUM OF COPPER NUCLEAR QUADRUPOLE
RESONANCE

In this section we examine the effect of Coulomb disorder
on the NQR spectrum. Doping dependence of 63Cu NQR in
La2−xSrxCuO4 has been studied in detail in Refs. 11 and 12,
which show that in the undoped parent compound the NQR
spectrum is comprised of a very narrow line �centered at
frequency 33.05 MHz at T=600 K�. The spectrum is shifted
to higher frequency upon hole doping, with a linewidth
roughly proportional to doping. Since NQR is a local probe
of real-space hole distribution,27 the broad spectrum indi-
cates a very inhomogeneous profile of hole density.12 An-
other interesting feature is that NQR spectra in doped
samples show a double structure: a secondary hump �the “B
line”� appears at a frequency higher than the broad main line.
The origin of the B line is attributed to the Cu sites that are
directly underneath the Sr substitutions. We will show the

experimental data and compare it with our results later in this
section.

The NQR spectrum is obtained by calculating the hole-
density distribution which is spatially nonuniform due to dis-
order. The model used in the previous section is modified
here as follows. Since NQR is a bulk-sensitive measurement
the surface defects are not relevant and disorder effect is
solely due to the Coulomb potential of randomly distributed
Sr dopants. The total number of out-of-plane Sr ions is equal
to that of the holes, as suggested by the doping mechanism
of La2−xSrxCuO4, and each Sr defect brings about a negative
charge. The concentration of negative defects is therefore
equal to doping and no positive defects are present. Further,
the strength of Coulomb interaction is reduced comparing to
the surface case because the bulk dielectric constant is larger:
��2�s, see Eq. �2�. We denote the effective dimensionless
charge in bulk as

Q �
0.5V

J
� 0.75, �25�

which is half of the surface dimensionless charge Qs, Eq.
�22�. The interaction of a hole with Sr ions is then

Hh−Sr = �
l,i

Ulici
†ci,

Uli = −
Q

��Rl − ri�2 + ad
2

. �26�

Similarly, the Coulomb interaction between holes is de-
scribed by

Hint = �
ij

Uijci
†cicj

†cj ,

Uij =
Q

��ri − r j�2 + ad
2

, �27�

where we use the same cutoff ad=1 to represent the size of
the Zhang-Rice singlet.

We further consider the effect of multilayer screening in
bulk of La2−xSrxCuO4 that contains a periodic structure of
CuO2 layers along c axis. The electric field of a charge in a
particular layer is substantially screened and deformed by the
other layers, as shown schematically in Fig. 3, due to their
large polarizability.

�3 �2 �1 0 1 2 3
Ω

0

0.2

0.4

0.6

0.8

A
�k

,Ω
�

P�Ω�
�

k��0,0� �0,
Π
�����
2
� �

Π
�����
2

,
Π
�����
2
�

FIG. 2. �Color online� ARPES spectral function, Eq. �24�, for
36�36 cluster averaged over 100 random realizations of Coulomb
disorder. Concentration of defects is C=0.6%. Values of momenta
are k= �� /2,� /2�, �0,� /2�, and �0,0�. Smooth lines correspond to
energy dispersion �=−�k �with �k given by Eq. �20��, broadened
according to Eqs. �5�, �15�, and �16�. In these equations, we set L
=36 /�� and ad=1.

other layer

other layer

image charge

image charge

"Hartree−Fock" layer

FIG. 3. Screening of in-plane Coulomb interaction by other lay-
ers. Dashed lines shows electric field of an in-plane charge bent due
to a large polarizability of “other layers.”
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In principle, one needs to perform a self-consistent calcu-
lation that includes multiple layers to account for this effect.
Unfortunately, such a calculation is too expensive computa-
tionally. However, one can consider the following two limit-
ing cases where analytical descriptions are available. The
first case is that at extremely small doping, the polarizability
of other layers is negligible, hence we recover the single-
layer formulas in Eqs. �26� and �27�. The second case is that
at sufficiently large doping, the high polarizability implies
that the electric field generated from one layer is practically
perpendicular to the surface of its nearest layers as it is
shown in Fig. 3. In this case, one can simply apply the
method of image to account for the screening due to other
layers by assuming that each layer is placed between two
highly polarizable media. The interactions described in Eqs.
�26� and �27� are then replaced by28

Uli → − Q� 1

��Rl − ri�2 + ad
2

+ �
n=1



2�− 1�n

��Rl − ri�2 + �2nd�2� ,

Uij → Q� 1

��ri − r j�2 + ad
2

+ �
n=1



2�− 1�n

��ri − r j�2 + �2nd�2� ,

�28�

where d=13.2 Å→3.5 is the separation between layers. The
crossover between these two limiting cases corresponds to
the situation when the in-plane dielectric constant due to
holes is equal to the ionic dielectric constant, which takes
place at x�1%.16 Since we are interested in the range of x
1%, relevant to the NQR data discussed below, Eq. �28� is
applied to all finite doping cases in our simulations. Accu-
racy of this approximation is somewhat questionable at x
=1% but it is fairly reasonable at higher dopings.

Here we give more details about the choice of ad under
the condition that the multilayer screening has been ac-
counted for via Eq. �28�. The main reason for this short-
range cutoff is the size of the Zhang-Rice singlet, which a
priori yields ad�1. On the other hand, the value of ad
should properly restore the binding energy of a single hole
trapped around a Sr ion, which is known to be �b
�10 meV�0.1J.29 To estimate �b, we assume that there
exists a large enough doping range where multilayer screen-
ing takes place via Eq. �28�, while the doping is still small
enough that the in-plane hole-hole interaction can be ig-
nored, and diagonalize the Hamiltonian H=Ht+Hh−Sr with
only one Sr present. The resulting binding energy versus ad
is shown in Fig. 4, where we found that ad=1 indeed gives
the correct binding energy. For extremely low doping x
�1%, we adopt the unscreened potential Eq. �26� without
considering other layers, and found that ad=1 gives �b
�0.23J�30 meV. This demonstrates the importance of the
multilayer screening at doping x1%. The value ad=1 is
adopted throughout this work.

The full Hamiltonian

H = Ht + Hh−Sr + Hint �29�

can be diagonalized by the following analysis. The dimen-
sionless parameter that characterizes the strength of interac-
tion in a 2D Coulomb gas is30

rs =
m�e2

��2��n
�

0.36
��x

. �30�

We see that even at x=2% the value of rs is still small rs
�1.4. Moreover, the multilayer screening introduced in Eq.
�28� further reduces this value to rs→1. Therefore, we are
safely in the weak-coupling regime where the Hartree-Fock
treatment is adequate. Notice that the hole dynamics are cer-
tainly strongly correlated at the length scale about a few

FIG. 5. �Color online� Plots of the hole density in a CuO2 layer
deep in the bulk, for a particular realization of random Sr positions,
at doping x=0.02 and two different temperatures T=0 and 600 K.
The length scale 5 nm ��13a0� is shown.
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FIG. 4. The hole Sr binding energy as a function of the short-
range cutoff ad. We recall that we set J=1. The interlayer screening
is taken into account according to Eq. �28�.
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lattice spacing. These are Hubbard or t-J model correlations
which result in the dispersion of dressed holes, Eq. �20�.
Here the term “weak coupling” refers to the long-range Cou-
lomb interaction between holes at the length scale 1 /�x,
where the effect of the short-range strong correlations is al-
ready taken care of by adopting the dispersion, Eq. �20�. The
Hartree-Fock decomposition is then applied to the hole-hole
interaction

Hint → �
ij

Uij�ci
†cicj

†cj − �
ij

Uij�ci
†cjcj

†ci. �31�

The diagonalization is again done in a 36�36 cluster with
periodic boundary conditions �torus�. Expectation values
�ci

†ci and �ci
†cj can be calculated by

�ci
†ci = �

n

��n�i��2f�En� ,

�ci
†cj = �

n

�n�i���n�j�f�En� , �32�

where

f�En� =
1

e�En−��/T − 1
�33�

is the Fermi-Dirac distribution.
To determine the macroscopic chemical potential in our

simulation, we adopt the following procedure. The chemical
potential at either zero or finite temperature in each defect
configuration is determined via the charge neutrality condi-
tion, i.e., the number of negative defects is equal to the num-

ber of holes. The average value of the chemical potential,
denoted by �, is then calculated out of 100 defect configu-
rations taken. We then shift the entire energy spectrum of
each particular configuration in such a way that the chemical
potential of the configuration is equal to this mean value �,
which is the macroscopic chemical potential.

Hole-density plots ni= �ci
†ci for particular realizations at

x=0.02 and x=0.07 are shown in Figs. 5 and 6, respectively,
for two different temperatures T=0 and T=600 K. One sees
very inhomogeneous density profiles, with a characteristic
length scale on the order of a few nanometers. Similar nano-
scale charge inhomogeneities, that closely resemble the STM
images of underdoped cuprates �see, e.g., Refs. 19 and 31�,
have been also reported in previous studies.32–34 Interest-
ingly, we find that increasing temperature substantially re-
duces the inhomogeneity �compare upper and lower panels

FIG. 6. �Color online� Plots of the hole density in a CuO2 layer
deep in the bulk, for a particular realization of random Sr positions,
at doping x=0.07 and two different temperatures T=0 and 600 K.
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FIG. 7. �Color online� The calculated �upper and middle panels�
and experimental �Ref. 12� �lower panel� 63Cu NQR spectra in
La2−xSrxCuO4 at different doping levels x=0.02, 0.04, 0.07, 0.115,
and 0.16. The narrow line at f =33.05 MHz �Ref. 11� corresponds
to the parent compound, x=0. Apart from broadening of the spectra,
doping results also in a high-frequency structure similar to the B
line observed in the experiment �Ref. 12�. Note that linewidth at
T=600 K is smaller than that at zero temperature.
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in Figs. 5 and 6�. This has consequences for NQR spectra
which we address in the following.

The NQR frequency at a particular site i is related to the
hole density ni by27

�i � �33.05 + 19 · ni�MHz. �34�

Thus, the entire NQR spectrum, which effectively sums over
all sites in the sample, is proportional to the probability dis-
tribution of the hole density P�n�, up to a constant shift
33.05 MHz corresponding to the parent compound.11 Calcu-
lated NQR spectra for T=0 and T=600 K are presented in
the upper and in the middle panels of Fig. 7, respectively.
The experimental plots of Refs. 11 and 12 for La2−xSrxCuO4
at different dopings and T=600 K are shown in the lower
panel for comparison. One sees that the shift and the broad-
ening of the spectrum upon doping are well reproduced by
the theory, with the linewidth consistent with experimental
data. Surprisingly, the agreement is reasonable even at 16%
doping which is certainly too large for our low doping
theory. The mechanism that narrows the linewidth with
temperature12 is also understood: increasing temperature re-
duces the spatial inhomogeneity of density profile, as shown
in Figs. 5 and 6, which results in a narrower probability
distribution P�n�, and hence the narrower NQR spectrum
�compare the upper and the middle panels in Fig. 7�. Al-
though our simple model does not take into account the di-
rect action of the Sr ion Coulomb field on the nearest Cu
nuclei, which is believed to be the main origin of the high-
frequency B line,12 in our numerics we do see a shoulderlike
structure emerging at high frequency. A detailed investiga-
tion shows that this structure is associated with holes that are
trapped around local potential minimum due to occasionally
clustered two to three Sr defects. We suspect that these
trapped holes, albeit not the main reason for the “B struc-
ture,” can have a certain contribution to it. The most impor-

tant point here is that the main line is well understood in our
model, which properly captures the hole-density distribution
and the screening effects in presence of Sr defects.

IV. DENSITY OF STATES AND ANDERSON
LOCALIZATION IN CuO2 LAYER IN THE BULK

In this section we address the issue of the bulk DOS in
presence of disorder and relation of the DOS to the normal-
state dc electrical conductivity. It is known that
La2−xSrxCuO4 exhibits the variable range hopping conduc-
tance at small doping x�0.055.17,23 This indicates a strong
localization of holes by Sr Coulomb potential. It has been
suggested that the onset of superconductivity at x�0.055 is
due to percolation of the bound states.35 The hole density
plots shown in Figs. 5 and 6 support this suggestion: the hole
density at x=0.02 �T=0� vanishes in large areas of the sys-
tem, signaturing a highly localized density profile, while the
density at x=0.07 �T=0� is nonzero practically everywhere
in the system, so wave functions are highly overlapped.

To study the problem in more detail, we have calculated
the 2D density of states, ����, via the standard definition

���� =
1

N
�

n

	�� − En� . �35�

Figure 8 shows the DOS calculated using the eigenenergies
of Eq. �29� and fixing the chemical potential as described in
the previous section. One sees clearly a full reduction in
DOS at the chemical potential as expected by the Coulomb
gap theory in 2D systems.21 The size of the gap is about
�C�2.0–2.5 meV at x=0.02 and it decreases to about 1.5–
2.0 meV at x=0.07. We define �C such that the total width of
the gap structure in DOS is 2�C as indicated in the lower
panel of Fig. 10. Importantly, the gap smoothly evolves
through the percolation point x=0.055. This implies that for
single-particle dynamics the system remains an Anderson in-
sulator even after percolation. Probably at even larger dop-
ing, x�0.1, the Coulomb gap smoothly evolves to the loga-
rithmic reduction in DOS corresponding to the weak
localization theory.22 Unfortunately, we are not able to trace
this crossover because the relatively small size of the cluster,
36�36, limits our accuracy of the gap calculation at the
level �1 meV. The insulating behavior across the percola-
tion point x=0.055 obtained in the present calculation agrees
perfectly with the experimental data24,25 where the in-plane
resistivity, measured in a very strong magnetic field that de-
stroys superconductivity, shows an insulating behavior below
�50 K for a wide doping range up to x�15%.

The DOS displayed in Fig. 8 exhibits oscillations above
chemical potential. These oscillations is a byproduct of the
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FIG. 8. The hole DOS in CuO2 layer deep in the bulk at dopings
x=0.02 and x=0.07. DOS vanishes at the chemical potential indi-
cating the Coulomb gap which gradually decreases with doping.

other layer

image charge

top "Hartree−Fock" layer

FIG. 9. Screening of in-plane Coulomb interaction in the top
layer by other layers underneath. Dashed lines shows electric field
of an in-plane charge bent due to polarization of “other layers.”
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finite size of the cluster. Maxima of the DOS correspond to
degenerate states with dispersion, Eq. �20�, on the 36�36
torus. The oscillations must certainly disappear in the ther-
modynamics limit. However, oscillations of this kind also
have an interesting physical meaning. In particular, the x
=0.02 plot in Fig. 8 indicates that while the quantum states
near the chemical potential are strongly localized, the high-
energy states well above the chemical potential are quite ex-
tended with a mean-free path exceeding the size of the clus-
ter used. Similarly, the smeared oscillations in Fig. 8, x
=0.07 indicate that the mean-free path is comparable with or
less than the cluster size.

V. EVOLUTION OF ARPES SPECTRA WITH DOPING
AND DENSITY OF STATES IN THE SURFACE

CuO2 LAYER

To study the evolution of ARPES spectrum upon doping,
we apply the above Hartree-Fock treatment and interlayer
screening picture to the top CuO2 plane near the surface. The
ARPES linewidth is determined now by a combined action
of two types of disorder: the surface defects, as described by
Hh−d in Sec. II, and a randomly distributed Sr-dopant ions
described by Hh−Sr in Sec. III. To be specific, we fix here the
concentration of positively/negatively charged surface de-
fects to be C+=C−=C=0.6%, as required to fit the ARPES
linewidth in La2CuO4, see Eq. �17�. We assume that concen-
tration C is independent on Sr doping since it is determined
by the surface properties unrelated to doping. Total concen-
tration for negatively charged defects is then x+C=x
+0.6%, counting both Sr dopants and the negatively charged
surface defects. Dimensionless charge Qs is again described
by Eq. �22�, which is twice of its bulk value Q due to the
reduced dielectric constant, Eq. �2�, on the surface. Conse-
quently, this enhances the disorder effects on the surface as
we will see below. The multilayer screening of the interac-
tions on a cleaved surface is also different from that in the
bulk, Eq. �28�, because even though other planes are still
considered as highly polarizable, and hence the method of
image is still valid for x1%, the cleaved surface is now
considered as located at a distance d above a polarizable
media, see Fig. 9, instead of being sandwiched between two
polarizable slabs. Collecting all these effects, we have

Hh−d + Hh−Sr = �
l,i

Ulici
†ci, �36�

where a disorder potential, originating either from surface or
Sr defects located at position Rl, is given by

Uli → � Qs� 1

��Rl − ri�2 + ad
2

+
− 1

��Rl − ri�2 + �2d�2� .

�37�

The difference between Hh−d and Hh−Sr is only in the sign of
Qs: Hh−Sr potential is always attractive and has charge −Qs,
while its sign in Hh−d depends on charge of the surface defect
which can be either positive or negative. Similarly, the hole-
hole interaction reads as

Hint = �
ij

Uijci
†cicj

†cj ,

Uij → Qs� 1

��ri − r j�2 + ad
2

+
− 1

��ri − r j�2 + �2d�2� . �38�

We then diagonalize the full Hamiltonian

H = Ht + Hh−d + Hh−Sr + Hint �39�

following the Hartree-Fock treatment described in Eqs.
�31�–�33�. The procedure described in Sec. III is again ap-
plied to determine the macroscopic chemical potential.

First, we discuss DOS obtained from the numerical diago-
nalization. Figure 10 shows the calculated DOS for the top
CuO2 layer, where one clearly sees a Coulomb gap on the
order of �C�0.1J�10 meV opening at the chemical poten-
tial. Comparing the result with the bulk DOS shown in Fig.
8, we see a significant difference which is due to enhanced
dimensionless charge Qs: a 2D Coulomb gap scales approxi-
mately as Q2, see Ref. 21.

There are no sizable oscillations of the DOS in Fig. 10.
This means that the hole mean-free path even well above the
chemical potential is much smaller than the cluster size. No-
tice that values of the chemical potential on the surface, Fig.
10, are somewhat different from those in the bulk, Fig. 8.
This difference is a byproduct of our approximations. A tiny
surface charging energy and/or a tiny surface lattice defor-
mation due to La→Sr substitutions can tune up the surface
chemical potential from its bulk value. Due to these effects,
which are not taken into account in the present model, we
cannot compare the calculated chemical potential with ex-
perimental values. Although these effects can shift the
chemical potential and overall energy scales, they do not
influence the wave functions and the shape of DOS.
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FIG. 10. The hole DOS in the surface CuO2 layer at dopings
x=0.02 and x=0.07. DOS vanishes at the chemical potential indi-
cating the Coulomb gap �C. The size of the gap, �C�10 meV, is
larger than that in the bulk �see Fig. 8�.
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Now, we turn to the ARPES spectra at finite dopings. The
spectral functions are again calculated by using the eigen-
states and eigenenergies given by exact diagonalization. No-
tice that at finite doping and zero temperature only states
above chemical potential are considered. This is because we
are working in the hole representation, while ARPES spec-
trum is associated with the electron spectral function, there-
fore only states occupied by electrons En�� should be
summed over in Eq. �24�. It is also convenient to shift origin
of the momentum to the dispersion minimum �� /2,� /2�,

k = ��/2,�/2� + p , �40�

and present the spectral function in terms of p. In our model
A�p ,�� is roughly symmetric around the dispersion mini-
mum, A�p ,���A��p� ,��. In addition, because of the 36
�36 finite cluster size, we can only calculate certain discrete
values of momentum, p= �

18�m ,n�, where m and n are inte-
gers. On the other hand, the doping level x can be varied
continuously. In Fig. 11, we present spectral functions calcu-
lated for the following momenta in the nodal direction

p0 = 0,

p1 = 	 �

18
,

�

18

 ,

p2 = 	2�

18
,
2�

18

 ,

p3 = 	3�

18
,
3�

18

 , �41�

and for x=0.01–0.11. Surprisingly, we see very narrow lines
with the width on the order ��0.2J�30 meV, in spite of
the very strong disorder. This is certainly due to the Coulomb
screening of both the surface defects and Sr-dopant poten-
tials. This residual “small” width ��30 meV is due to the
hole scattering from the residual �locally unscreened� part of
the random potential. Remarkably, the residual width is quite
universal, it is practically independent of doping. On a quali-
tative level, this �somewhat unexpected� observation can be
understood as a result of two opposite trends: on the one
hand, more Sr doping increases amount of disorder but, at
the same time, adding more holes reduces an effective scat-
tering amplitude on each Sr defect because of better screen-
ing. Within the present low-energy effective theory, which is
valid up to energies E�J�100–200 meV, the residual
width is also energy/momentum independent.

Finally, the evolution of the small Fermi surface upon
doping can be considered. We first notice that in the homo-
geneous case the dispersion is given by Eq. �20�. Hence the
Fermi momentum pF and the doping x are related as

x =
pF

2

�
, �42�

if doping is small and the dispersion is roughly parabolic.
Therefore, pF= p1 at x�0.02 and pF= p2 at x�0.08. Interest-
ingly, the relation �42� remains qualitatively correct even in
the presence of strong disorder. This can be seen by the
following analysis that extracts the Fermi momentum: we
know that without disorder, the ARPES intensity at p below
pF vanishes at any finite doping, since the momentum is
inside hole Fermi surface and no electron with this momen-
tum can be excited. Therefore, the ARPES intensities at
p= p0 �red curves� in Fig. 11 are nonzero only because of
disorder. The intensity decays very quickly when doping is
increasing. We found that maxima of spectral functions are
never exactly at the chemical potential, as one would expect
in a system without disorder. Instead, we see that the maxi-
mum of each line gets closer to the chemical potential as
doping is increased but stops at an energy scale �C�0.1J
�10 meV below the chemical potential. This is clearly due
to the Coulomb gap opening in the DOS, as shown in Fig.
10, which suppresses the spectral function within �−�C
���� and shifts the maximum. The maximum of the p
= p1 line �green curves� approaches its rightmost position �
−�C at x�0.03, so at this doping we say the “Fermi surface”
crosses the momentum p= p1. Similarly, the maximum of the
p= p2 line �blue curves� approaches its rightmost position at
x�0.09, hence the Fermi surface crosses p= p2 at this dop-
ing. Following this procedure, we can identify the “Fermi
momentum” at each doping, which can be compared with the
experiments, although only discrete values at p= �

18�m ,n� can
be identified.

FIG. 11. �Color online� The electron spectral function A�k ,�� at
doping levels x=0.01, 0.03, 0.05, 0.07, 0.09, and 0.11 calculated for
momenta p0, p1, p2, and p3 specified in Eq. �41�. The Coulomb gap
�C is highlighted in the x=0.11 plot.
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It should be stressed that our aim here is to study the
Coulomb disorder and its influence on the quasiparticle peak.
Strong �Hubbard or t-J model� correlations are taken into
account only via effective dispersion, Eq. �20�, of the holon.
In all other respects we disregard the spin degrees of free-
dom. Therefore, we do not reproduce the asymmetry of the
ARPES spectral function A�p ,�� with respect to the bound-
ary of the magnetic Brillouin zone, and also strongly under-
estimate the ARPES intensity below the quasiparticle peaks,
seen in the experiment as a pronounced “hump” structure. In
spite of these drawbacks, the theory allows us to address the
issue of evolution of the quasiparticle peak with disorder/
doping. In particular, our theory explains why the ARPES
lines in doped cuprates are relatively narrow in spite of the
very strong Coulomb disorder.6–10

Another interesting result obtained in this section is the
predicted Coulomb gap �10 meV in density of states that
could be observed by surface-sensitive probes such as the
STM and ARPES. In fact, the gap features of this scale are
present in the STM data for underdoped cuprates �see, e.g.,
Ref. 31� and are typically attributed to the �local� pairing
gap; the Coulomb gap might be an additional origin of these
low-energy structures.

VI. CONCLUSIONS

In this paper, a comprehensive study of Coulomb disorder
effects in undoped and lightly doped cuprates is performed
and the main results can be summarized as follows. �1� We
have demonstrated that a very small amount of surface Cou-
lomb defects leads to a dramatic broadening of ARPES spec-
trum in insulators. In particular, a concentration of defects
about just a fraction of 1% is sufficient to explain observed
ARPES linewidths in La2CuO4 and Ca2CuO2Cl2. The broad-
ened spectrum displays a Gaussian shape consistent with
experiments.9 In the end of Sec. II we have discussed pos-
sible ways to check the suggested broadening mechanism
experimentally. �2� Doping process, e.g., random substitu-
tions La→Sr in La2−xSrxCuO4, intrinsically creates strong
inhomogeneity in the system. By performing Hartree-Fock
calculations, we show that due to the strong Coulomb
screening, ARPES lines obtain a very narrow width ��
�30–40 meV� as soon as doping is higher than �1%, in
spite of the very strong disorder. These results provide a

natural explanation for why the ARPES spectra undergo radi-
cal changes—from very broad Gaussian to narrow quasipar-
ticle peaks—upon just a few percent doping of parent com-
pounds. The residual small width ��30–40 meV is due to
the hole scattering from the residual �locally unscreened� part
of the random potential. The residual width is quite univer-
sal, it is practically independent of doping/energy/
momentum. �3� The calculation of the surface density of
states demonstrates that the top CuO2 layer of La2−xSrxCuO4
is always in the Anderson localization regime and we predict
the Coulomb gap on the order of �10 meV which could be
observed with STM and/or ARPES experiments. �4� The cal-
culation of the bulk density of states also shows the Coulomb
gap on the order of a few meV. The gap evolves smoothly
through the percolation point x=0.055. Hence the system
remains in the Anderson localization regime and this ex-
plains the insulating behavior observed in transport proper-
ties at high magnetic fields.24,25 �5� Considering Sr-doping-
induced disorder in La2−xSrxCuO4, we find a very
inhomogeneous hole-density profile which yields a broad
NQR spectrum. The calculated doping and temperature de-
pendencies of NQR line shapes are consistent with experi-
ments.

Altogether, the results reported here highlight a significant
role played by Coulomb disorder effects in cuprates. In par-
ticular, screening of Coulomb defects �either of extrinsic ori-
gin or introduced by dopant ions� results in a dramatic evo-
lution of physical properties upon doping. In this work, we
focused mostly on the charge degrees of freedom, accounting
for underlying magnetic correlations merely via a properly
renormalized dispersion of the mobile holes. It remains a
challenge to incorporate the magnetic degrees of freedom
into the model explicitly, exploring thereby the coupled
charge and spin dynamics in cuprates at short length scales.
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